现代技术陶瓷及应用
摘要本文简述现代技术陶瓷最新研究、发展动态以及在实际中的应用,其中包括结构陶瓷、陶瓷基复合材料和功能陶瓷三个部分。此外对厦门大学材料系在现代技术陶瓷方面的研究和进展作了简介。
陶瓷材料一般分为传统陶瓷和现代技术陶瓷两大类。传统陶瓷是指用天然硅酸盐粉末(如黏土、高岭土等)为原料生产的产品。因为原料的成分混杂和产品的性能波动大,仅用于餐具、日用容器、工艺品以及普通建筑材料(如地砖、水泥等),而不适用于工业用途。现代技术陶瓷是根据所要求的产品性能,通过严格的成份和生产工艺控制而制造出来的高性能材料,主要用于高温和腐蚀介质环境,是现代材料科学发展最活跃的领域之一。下面对现代技术陶瓷三个主要领域:结构陶瓷、陶瓷基复合材料和功能陶瓷作一简单介绍。
一、结构陶瓷
同金属材料相比,陶瓷的最大优点是优异的高温机械性能、耐化学腐蚀、耐高温氧化、耐磨损、比重小(约为金属的1/3),因而在许多场合逐渐取代昂贵的超高合金钢或被应用到金属材料根本无法胜任的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类;氧化物陶瓷、非氧化物陶瓷和玻璃陶瓷。
1、氧化物陶瓷
主要包括氧化铝、氧化错、莫来石和钦酸铝。氧化物陶瓷最突出优点是不存在氧化问题,原料价格低廉,生产工艺简单。氧化铝和氧化错具有优异的室温机械性能,高硬度和耐化学腐蚀性,主要缺点是在1000℃以上高温蠕变速率高,机械性能显著降低。氧化铝和氧化错主要应用于陶瓷切削刀具、陶瓷磨料球、高温炉管、密封圈和玻璃熔化池内衬等。莫来石室温强度属中等水平,但它在1400℃仍能保持这一强度水平,并且高温蠕变速率极低,因此被认为是陶瓷发动机的主要候选材料之一。上述三种氧化物也可制成泡沫或纤维状用于高温保温材料。钛酸铝陶瓷体内存在广泛的微裂纹,因而具有极低的热膨胀系数和热传导率。它的主要缺点是强度低,无法单独作为受力元件,所以一般用它加工内衬用作保温、耐热冲击元件,并已在陶瓷发动机上得到应用。
2、非氧化物陶瓷(本文转载自
www.yzbxz.com 一枝笔写作网)
主要包括碳化硅、氮化硅和赛龙(SIALON)。同氧化物陶瓷不同,非氧化物陶瓷原子间主要是以共价键结合在一起,因而具有较高的硬度、模量、蠕变抗力,并且能把这些性能的大部分保持到高温,这是氧化物陶瓷无法比拟的。但它们的烧结非常困难,必须在极高温度(1500~2500℃)并有烧结助剂存在的情况下才能获得较高密度的产品,有时必须借助热压烧结法才能达到希望的密度(>95%),所以非氧化物陶瓷的生产成本一般比氧化物陶瓷高。
这些含硅的非氧化物陶瓷还具有极佳的高温耐蚀性和抗氧化性,因此一直是陶瓷发动机的最重要材料,目前已经取代了许多超高合金钢部件。现有最佳超高合金钢的使用温度低于1100℃,而发动机燃料燃烧的温度在1300℃以上,因而普遍采用高压水强制制冷。待非氧化物陶瓷代替超高合金钢后,燃烧温度可提高到1400℃以上,并且不需要水冷系统,这在能源利用和环保方面具有重要的战略意义。
非氧化物陶瓷也广泛应用于陶瓷切削刀具。同氧化物陶瓷相比,其成本较高,但高温韧性、强度、硬度、蠕变抗力优异得多,并且刀具寿命长、允许切削速度高,因而在刀具市场占有日益重要地位。它的应用领域还包括轻质无润滑陶瓷轴承、密封件、窑具和磨球等。
3、玻璃陶瓷
玻璃和陶瓷的主要区别在于结晶度,玻璃是非晶态而陶瓷是多晶材料。玻璃在远低于熔点以前存在明显的软化,而陶瓷的软化温度同熔点很接近,因而陶瓷的机械性能和使用温度要比玻璃高得多。玻璃的突出优点是可在玻璃软化温度和熔点之间进行各种成型,工艺简单而且成本低。玻璃陶瓷兼具玻璃的工艺性能和陶瓷的机械性能,它利用玻璃成型技术制造产品,然后高温结晶化处理获得陶瓷。工业玻璃陶瓷体系有镁一铝一硅酸盐、锂一镁一铝一硅酸盐和钙一镁一铝一硅酸盐系列,它们常被用来制造耐高温和热冲击产品,如炊具。此外它们作为建筑装饰材料正得到越来越广泛的应用,如地板、装饰玻璃。
二、陶瓷基复合材料
复合材料是为了达到某些性能指标将两种或两种以上不同材料混合在一起制成的多相材料,它具有其中任何一相所不具备的综合性能。陶瓷材料的最大缺点是韧性低,使用时会产生不可预测的突然性断裂,陶瓷基复合材料主要是为了改善陶瓷韧性。基于提高韧性的陶瓷基复合材料主要有两类:氧化错相变增韧和陶瓷纤维强化复合材料。
氧化锆相变增韧复合材料是把部分稳定的氧化锆粉末同其它陶瓷粉末(如氧化铝、氮化硅或莫来石)混合后制成的高韧性材料,其断裂韧性可以达到10Mpa,以上,而一般陶瓷的韧性仅有3Mpa左右。这类材料在陶瓷切削刀具方面得到了非常广泛的应用。
纤维强化被认为是提高陶瓷韧性最有效和最有前途的方法。纤维强度一般比基体高得多.所以它对基体具有强化作用;同时纤维具有显著阻碍裂纹扩展的能力,从而提高材料的韧性。目前韧性最高的陶瓷就是纤维强化的复合材料,例如碳化硅长纤维强化的碳化硅基复合材料韧性高达30Mpa以上,比烧结碳化硅的韧性提高十
倍.但因为这类材料价格昂贵,目前仅在军械和航空航天领域得到应用。另一引人注目的增强材料是陶瓷晶须。晶须是尺寸非常小但近乎完美的纤维状单晶体.其强度和模量接近材料的理论值,极适用于陶瓷的强化。目前这类材料在陶瓷切削刀具方面已经得到广泛应用,主要体系有碳化硅晶须一氧化铝一氧化铅、碳化硅晶须一氧化铝和碳化硅晶须一氮化硅。
三、功能陶瓷
功能陶瓷是具有光、电、热或磁特性的陶瓷,已经具有极高的产业化程度。下面简介几类主要功能陶瓷的性能。
1、导电性能
陶瓷材料具有非常广泛的导电区间,从绝缘体到半导体、超导体。大多数陶瓷具有优异的电绝缘性,因而被广泛用于电绝缘体。半导体分为电子型和离子型半导体,以晶体管集成电路为代表的是电子型半导体。离子型半导体仅对某些特殊的带电离子具有传导作用,最具有代表性的是稳定氧化锆和β一氧化铝。稳定氧化钻仅对氧离子具有传导作用,主要产品有氧传感器(主要用来测定发动机的燃烧效率或钢水中氧浓度)、氧泵(从空气中获得纯氧)和燃料电池。β一氧化铝仅对钠离子具有传导作用,主要用来制造钠一硫电池,其特点是高效率、对环境无危害和可以反复充电。陶瓷超导体是近10年才发展起来的.它的临界超导转化温度在所有类超导体中最高,已经达到液氮温度以上。典型的陶瓷超导体为钇一钡一铜一氧系列材料,已经在计算机、精密仪器领域得到广泛应用。(责任编辑:一枝笔写作事务所)