原始火球的超级恒星结构模型
笔者认为,宇宙起源于超高温、超高密度的原始火球的大爆炸。原始火球主宰了宇宙天体的起源,产生宇宙的原始火球有磁孔、磁结及黑子。磁孔、磁结及黑子是宇宙天体的胚胎。原始火球分层次、分规模、分先后的大爆炸产生了我们这个至今还在以对数螺线形方式加速膨胀的宇宙。而以磁孔、磁结及黑子作为星云物质的聚集中心,又同样是以对数螺线形方式收缩,形成了宇宙中各个层次上的宇宙天体。天体运行轨道的大小和时间的对数螺线关系,就是我们这个宇宙的时空结构。这是对数螺线的几何性质,可以解释人类为什么向任意方向观察,宇宙都在加速膨胀。
那么,原始火球的结构怎样?由它爆炸产生的宇宙是怎样以对数螺线形方式加速膨胀的呢?
一、原始火球的超级恒星结构模型
1、原始火球的恒星结构模型
笔者认为原始火球有类似太阳的结构,是宇宙中的第一个、第0级唯一超级特大恒星。它包括内核、辐射区、壳层结构(对流区、光球、色球)、日冕等部分,其活动规律与太阳相似。
2、原始火球的大爆炸类型
由于笔者假定原始火球有类似太阳的结构,是第0级超级特大恒星,它和所有的恒星一样存在周期性超级大爆炸。它有三种爆炸形式,即,有壳周期性大爆炸、抛壳周期性大爆炸和无壳周期性大爆炸。
(1)、原始火球的有壳周期性大爆炸
这个时期的原始火球有类似于太阳的完整恒星结构,但同时又存在周期性大爆炸,此时由于不能抛射原始火球的壳层结构(对流区、光球、色球),这种有完整恒星结构的周期性大爆炸,就叫做原始火球的有壳周期性大爆炸。这时还不能由原始火球对流(本文转载自 www.yzbxz.com 一枝笔写作网)区黑子形成相对独立的新的超级恒星。从规模上比原始火球的抛壳周期性大爆炸小。
(2)、原始火球的无壳周期性大爆炸
原始火球的无壳周期性大爆炸是一种介于原始火球的有壳周期性大爆炸和抛壳周期性大爆炸之间的过渡类型。它开始于上一次抛壳大爆炸熄灭后,结束于下一次有壳周期性大爆炸的点火时期,爆炸极不稳定。对原始火球这个时期非常短暂,而对其它恒星,这个时期相对较长。
(3)、原始火球的抛壳周期性大爆炸
因为原始火球的黑子同样存在于原始火球壳层结构的对流区。所以,从原始火球的第一次抛壳大爆炸开始,宇宙中便由原始火球的黑子产生出了第一代超级恒星。为了明确表示某代恒星第多少次数的抛壳周期性大爆炸,笔者提出一种“代~次”表示法或叫x~Y表示法来进行表示。
比如用数字0表示原始火球是第0级超级特大恒星,用数字代号0~Y表示由原始火球产生的抛壳大爆炸次数。那么,由原始火球产生的抛壳周期性大爆炸次数可表示为0~1,0~2,0~3,~~~~,0~Y。
到目前为止,在原始火球的抛壳周期性超级大爆炸0-Y表示法中的Y,已经是一个非常巨大的数字,以它为中心形成了我们这个至今还在加速膨胀的宇宙。
一般来说,第一代恒星还要发生很多次数的抛壳周期性大爆炸,这样形成第二代恒星。用“代~次”表示法表示成1~1,1~2,1~3,~~~~,1~Y。
同样,第2代恒星也要产生抛壳周期性大爆炸,用“代~次”表示法表示可表示为,2~1,2~2,2~3,~~~~~,2~Y,如此等等,依次类推。
一般说来,我们人类目前观测到的第x代恒星在形成超星系团或星系时,Y=1时的情况最多,而Y>1时的情况较少。所以,第x代恒星形成的超星系团、星系或行星系统可表示为{x、Y:x~Y,Y≥1}。如果Y=0,则表示第x代恒星还没有发生抛壳周期性大爆炸。
以太阳系为例,用代-次表示法,可表示为{x、Y:x~Y,Y=1}。前一个x表示太阳是第几代恒星,而Y表示太阳发生的第几次抛壳周期性大爆炸。根据笔者的研究,太阳系的行星系统是在一次抛壳大爆炸中形成的。但是,太阳还发生过多次有壳周期性大爆炸,只是其规模比太阳的抛壳大爆炸小得多。
二、宇宙的时空结构
1、第x+1代天体(恒星或行星)与第x代恒星之间的时空距离规律
(1)、在第x代恒星周围怎样形成螺旋形的第x+1代天体的旋臂
当x≥1时,第x代恒星就开始有了自转,当Y≥1时,第x代恒星就开始发生抛壳大爆炸。
但是,我们人类目前观测到的第x代恒星,在宇宙起源过程中,基本上属于最后几代恒星,大多数只发生了一次抛壳大爆炸,因此,形成螺旋形旋臂者数量最多。
在第x代恒星壳层结构的南北半球各自都有与赤道形成一定角度的线状分布的黑子群。而且常常是在第x代恒星壳层结构的对流区,上一周期的黑子群还没有消失时,下一周期的黑子群又产生出来了。所以,在第x代恒星的壳层结构的南北半球有两条或两条以上的线状分布的黑子群。可以说,这就是第x代恒星周围形成螺旋形的第x+1代天体旋臂的胚胎。
当第x代恒星进行抛壳大爆炸时,被抛出的第x代恒星对流区的磁孔、磁结及黑子便以大黑子为中心,在第x代恒星周围形成两条或两条以上的巨大的螺旋形旋臂。
在螺旋形旋臂中的磁孔、磁结及黑子都可以将弥漫的星云物质聚集起来,形成第x+1代天体。
(2)、第x+1代天体螺旋形旋臂的轨道膨胀与收缩公式
设第x代恒星第1次抛壳大爆炸之前的恒星质量为M0,第x代恒星的质量衰减后为M=M0e-λt,λ是待定常数,t表示时间。当第x代恒星进行第X~Y次大爆炸时,把第x+1代天体的相关常数代入第x代恒星的中心力场中的比耐公式,得到第x+1代天体(恒星或行星)与第x代恒星的轨道方程为
r=h²/[k²+(Ah²/k²)cosθ],
k²=GM0e-λt。
其中的常数待定。这个公式表明第x+1代天体(恒星或行星)的轨道大小随着时间的推移而不断变大(膨胀),这就是“宇宙的时空膨胀方程(公式)”,或叫“轨道漂移方程(公式)”。
哈勃定律实际上就是“宇宙的时空膨胀方程”的特殊形式。比如取cosθ=0,方程两边对时间t求微商得v=dr/dt=λr,这就是星系的退行速度与距离成正比的哈勃定律。但是,在严格的求解过程中,哈勃定律不成立。
由提丢斯—彼德定律指出的太阳系内的行星分距离公式布r=0.4+0.3×2n,n取-∞,0,1,2,3,4,5,6,7.(取天文单位)。实际上就是太阳系内的行星分布在太阳周围的时空公式.它也是“宇宙的时空膨胀方程”的特殊形式。这决定于太阳的抛壳大爆炸的规模和各常数的具体取值。经笔者化简后,形式上完全与提丢斯—彼德定律公式的形式完全相同。(责任编辑:一枝笔写作事务所)