五、结语
实践说明,砼构件施工通过技术创新和工艺改进,其表面能够达到镜面效果,其技术方案和改进措施是切实可行的,各项经济技术指标均能超过施工技术规范的要求,突破了传统工艺,开创了砼表面镜面效果的先例,为砼工程运用提供了新的途径。
浅谈工程地质三维建模与可视化
摘要:现有的地理信息系统(GIS)都主要表达二维的地表地物的图形和属性信息,要扩展到真三维包含地下地质结构的地质信息系统还有差距。本文分析了工程地质体三维建模与可视化研究的关键技术问题,并结合金沙江某水电工程坝址区的三维地质建模进行了初步开发和应用。
关键词:工程地质;三维建模与可视化;地质信息
1前言
现有的地理信息系统(GIS)都主要表达二维的地表地物的图形和属性信息,要扩展到真三维包含地下地质结构的地质信息系统还有差距。一个大型地质工程项目从可行性研究阶段、初步设计阶段到详细设计阶段,乃至到工程施工与运行阶段,往往积累了大量的地质资料,用三维模型图形图像来表达和解释如此庞大的资料,比光靠数据库和图表图纸等传统手段来得有效的多。建立工程地质体的三维模型,处理岩层界面与结构面组合关系,逼真反映地下主要地质结构全貌,将为工程地质工作者分析研究工程地质现象和发现掌握岩土体结构规律,提供一种崭新的研究手段和研究方法。
国外三维地质建模和可视化研究发展较快。加拿大阿波罗科技集团公司推出的三维建模与分析软件MicroLYNX,通过对离散点采样、钻探采样和探槽采样等空间数据的处理,产生剖面、块和面等模型,确定矿藏分布和等级变化并计算矿藏储量。加拿大GemcomSoftwareInternationalInc.公司开发的Gemcom软件通过钻孔、点、多边形等数据,利用实用的图形编辑和生成工具,显示钻孔孔位分布,运用不规则三角网建立表面和实体模型,运用多义线圈闭岩层和矿体边界进行储量和品位分析,提供了交互操作功能并允许用户根据自己的经验和专家知识勾画地质模型,实现任意剖面切割任意角度观察和实体与实体或实体与表面的交切与布尔运算等。国外软件主要是瞄准采矿工程,能够较好地满足采矿工程活动中的矿产资源勘探和评价、地下矿井和露天矿坑设计和规划、矿产资源管理和采矿生产管理等需求。美国Kinetix公司开发的3DStudioMAX,Alias/Wavefront公司开发的Maya和微软公司开发的Softimage等大众化的三维建模软件,在构建工业和建筑模型与动画制作方面有其独到之处,但交互查询的功能较弱,与工程勘测数据库结合并应用于工程地质三维建模方面还有较大距离。
张菊明等对风化带分布、多层地层等地质信息的可视化和断层错断岩层的表达和显示的算法[1,2]进行了较为深入的研究,为工程地质三维可视化软件的开发准备了数学基础,并借助AutoCAD平台实现了复杂三维地质图形的显示。国内的灵图VRMap地理信息系统软件有较强的地形模拟和地表地物的查询功能,但不是真三维的地质建模工具。北京东方泰坦科技有限公司开发TITAN三维建模软件,基于框架建模的思想,利用平行或基本平行的剖面数据,建立起三维空间复杂形状物体的真三维实体模型,但目前只是初步的三维建模与图形处理的引擎,在面向具体专业时,需要添加或扩充专业模块,比如工程地质专业模块等。
纵观国内外几种软件的研究与开发现状,它们为工程地质三维建模与可视化打下了很好的技术基础,提供了很宝贵的开发经验。但是,对于工程地质专业的地质体建模与可视化分析的针对性不强,不能够很好地满足工程地质生产与研究的专业功能需要。因此本文将从分析工程地质的三维建模和可视化的关键技术问题入手,简单描述作者在工程地质三维建模和可视化方面的初步开发研究成果。
2关键技术问题分析2.1离散数据的插值与拟合
工程地质复杂地质体中的各种地质信息,包括地表地形、地下水位、地层界面、断层、节理、风化带分布、侵入体及各种地球物理、地球化学、岩土体的物理力学参数或数据的等值面(线)等,都可以看作是三维空间中的函数,它们的拟合函数要根据实际勘测数据建立,实测数据越丰富,越能够真实描绘出这些信息的空间分布规律。地表地形测量数据、地下水位埋深测量信息等的单值曲面图形生成可归结为双自变量离散数据的插值和拟合,多值曲面如倒转褶皱和空间等值面等,则应采用多参变量插值等其他一些较复杂的方法。空间曲面插值函数有以下构造方法,如与距离成反比的加权方法(Shepard方法),径向基函数插值法(Multiquadric方法)[3],平面弹性理论插值法[1,2]等,它们同样适用于单个连续地层界面、地球物理勘探数据、地球化学勘探数据以及岩土体物理力学参数在地质体空间的分布。
2.2三维数据结构
工程地质体一般是不规则形体,在计算机图形学中曲线和曲面总是分别通过很多微小直线段和微小三角面逼近来模拟地层岩性界线和岩层曲面,即岩层界面(和地表曲线、地下水位面等地质层面界线)和岩层曲面都分别是许多微小直线段和微小三角面的集合。地质体三维空间数据结构是工程地质三维建模和可视化的基础,这就要求必须具备有效的分层的三维数据结构,能够确保人机交互和查询的实现。
2.3曲面求交
地质体中存在大量各种层面,当出现地层不整合、断层错断岩层、地层尖灭和地下水出露于河谷地表等情形时,就自然会遇到曲面间求交的问题;地质体三维模型的上部边界是地表曲面,通过数学方法拟合出的岩层面或地下水位面不应超出地表曲面,即超出部分不应显示。同样的,当显示多层地层时,下面的每一岩层应以其上一岩层为边界。因此,为了可视化地层界面必须要解决地层面与地表、断层面和其他地层面的求交问题。另一方面,在剖面图成图时,地质界线的绘制是通过显示剖面(平面)与各种地质界面(曲面)求交所得出的交线。因此曲面求交包括地质界面(层面)之间的相交,和地质界面与剖面的相交两类问题。
2.4三维拓扑结构分析
从地质学角度看,拓扑是地质对象间关系的表格,拓扑表存储层位间上覆、下伏和交切(被断层切割后地层的拓扑表达)等的地层学关系及地质空间位置关系。拓扑也可视为允许这些地质关系合理储存的数据结构。例如,考虑多层地层,上一个岩层的底面和与其相邻的下一个岩层的顶面是上下岩层这两个实体的公共部分或共享边界,它们之间的拓扑关系就是相邻和同一的关系,在存储数据时只存储上一个岩层的底面或其相邻的下一个岩层的顶面,即相邻岩层的边界曲面可以存为一个地层曲面,大大减少数据存储量。评价地质模型系统的优缺点往往决定于描述地质对象所用的拓扑结构[4]。(责任编辑:一枝笔写作编辑)