电力系统学术论文
下面是有关电力系统学术论文的内容:
电力系统的安全稳定性研究
[关键词]电力系统;安全性;稳定性
[摘要]电力系统的安全稳定运行对国民经济意义重大。随着电网的不断互联和电力市场的逐步实施,电力系统的运行环境更加复杂,对电网的安全稳定运行要求也越来越高。通过分析电力系统安全稳定性方面存在的问题,提出提高电力系统运行的安全稳定性的相关对策。
一、电力系统安全稳定性方面存在的问题
随着计算机技术、通讯技术、控制技术以及电力电子技术的飞速发展及其在电力系统中的应用,有关电力系统的安全稳定性分析方面出现了许多亟待探讨的问题,主要体现在以下几个方面:
(一)电力系统中的数据利用
电力系统的数据包括数字仿真数据及系统中各种装置所采集的实测数据,例如管理信息系统、地理信息系统以及各种仿真软件仿真生成的数据。然而工程技术人员通过这些数据所获取的信息量仅仅是全体数据所包含信息量的极少一部分,隐藏在这些数据之后的极有价值的信息是电力系统各种失稳模式、发展规律及内在的联系,对电网调度人员来说,这些信息具有极其重要的参考价值。
(二)电力系统安全稳定性的定量显示
随着电力市场的形成和发展,系统将运行在其临界状态附近,此时安全裕度变小,调度人员也面临着越来越严峻的挑战。为此,我们要深入了解在新的市场环境下电力系统全局安全稳定性的本质,找出电力系统各种失稳模式、内在本质及对其发展趋势的预测,同时,我们还需要使用浅显易懂的信息来定量估计系统动态安全水平,估计各种参变量的稳定极限,同时使用更多的高维可视化技术,对电力系统安全稳定的演化过程进行可视化和动态分析、模拟。为调度人员创造一个动态的、可视化的、交互的环境来处理、分析电力系统的安全稳定问题。
(三)电力系统安全稳定性的评价及控制
由于电力系统的扰动类型极其复杂多样,无法完全预测,调度人员需要更多的专家、更有价值的信息来预测及采取必要的控制措施来保证电力系统的安全稳定运行。这就对安全稳定评估算法的实时性、准确性及智能性提出了挑战。
二、提高电力系统运行的安全稳定性的对策研究
为解决上述问题,工程技术人员需要掌握系统可能运行空间所蕴含的规律,并使用不断积累的实测数据直接对系统的安全稳定性进行分析,在这种情况下,单凭人力已无法完成这种数据分析任务,为此,研究新的智能数据分析方法,更多地用计算机代替人去完成繁琐的计算及推导工作,对提高系统运行的安全稳定性具有重要的意义。
(一)运用数据仓库技术有效利用电力系统中的大量数据
数据仓库是一种面向主题的、集成的、不可更新的、随时间不断变化的数据集合。它就像信息工厂的心脏,为数据集市提供输入数据,数据挖掘等探索。
数据仓库具有如下四个重要的特点:(1)面向主题:主题是在一个较高层次上将数据进行综合、归类并进行分析利用的抽象。面向主题的数据组织方式,就是在较高层次上对分析对象的数据的完整、一致的描述,能统一地刻画各个分析对象所涉及的各项数据,以及数据之间的关系。(2)集成的:由于各种原因,数据仓库的每个主题所对应的数据源在原有的分散数据库中通常会有许多重复和不一致的地方,而且不同联机系统的数据都和不同的应用逻辑绑定,所以数据在进入数据仓库之前必须统一和综合,这一步是数据仓库建设中最关键、最复杂的一步。(3)不可更新的:与面向应用的事务数据库需要对数据作频繁的插入、更新操作不同,数据仓库中的数据所涉及的操作主要是查询和新数据的导入,一般不进行修改操作。(4)随时间不断变化的:数据仓库系统必须不断捕捉数据库中变化的数据,并在经过统一集成后装载到数据仓库中。同时,数据仓库中的数据也有存储期限,会随时间变化不断删去旧的数据,只是其数据时限远比操作型环境的要长,操作型系统的时间期限一般是6090天,而数据仓库中数据的时间期限通常是5-10年。
(二)运用数据挖掘技术挖掘电力系统中潜在的有用信息
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据挖掘的功能和目标是从数据库中发现隐含的、有意义的知识,它主要具备以下五大功能:(1)概念描述。概念描述就是对某类对象的内涵进行描述,并概括这类对象的有关特征。概念描述分为特征性描述和区别性描述,前者描述某类对象的共同特征,后者描述不同类对象之间的区别。(2)关联分析。数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。(3)聚类。数据库中的记录可被化分为一系列有意义的子集,即聚类。聚类增强了人们对客观现实的认识,是概念描述和偏差分析的先决条件。聚类技术的要点是,在划分对象时不仅考虑对象之间的距离,还要求划分出的类具有某种内涵描述,从而避免了传统技术的某些片面性。(4)自动预测趋势和行为。数据挖掘技术能够自动在大型数据库中寻找预测性信息,以往需要进行大量手工分析的问题如今可以迅速直接地由数据本身得出结论。(5)偏差检测。数据库中的数据常有一些异常记录,从数据库中检测这些偏差意义重大。偏差包括很多潜在的知识,如分类中的反常实例、不满足规则的特例、观测结果与模型预测值的偏差等。
(三)运用基于风险的暂态稳定评估方法增强对电力系统安全稳定性的评价及控制
基于风险的暂态稳定评估方法首先对评估系统的暂态安全风险逐个元件进行分析,然后综合给出相应的风险值。这种评估方法不仅可以分析稳定概率性,也可以定量地分析失稳事件的严重性,即事故对系统所造成的后果。它能有效地把稳定性和经济性很好地联系在一起,给出系统暂态稳定风险的指标,并在一定程度上提高输电线路的传输极限,这将有利于增加社会效益。
参考文献:
[1]张建平、陈峰,《福建电力系统安全稳定性研究》,载《福建电力与电工》2001,4.(责任编辑:一枝笔写作编辑)