1、反射
自然界中,事物的发展、能量的转化、信息的传递等等各种的自然现象都包含着因果关系,只要时间没有停滞,这种关系将广泛存在,从“因”到“果”,贯穿着事物的发展过程,当过程长且复杂时我们称之为“事件”,反之则称之为“触发”。
生物个体在与外界环境或是个体自身进行物质或信息交换时,也存在着这种现象,在这里我们称之为“反射”。
反射是最基本的神经活动,现行的说法是将反射分为两种,无条件反射和条件反射,其中,无条件反射是动物和人生下来就具有的,即遗传下来的对外部生活条件特有的稳定的反应方式,在心理发展的早期阶段,这种反应方式提供最基本的生存技能,也就是本能,如:食物反射、防御反射、定向反射,还有一些可能是在人类进化过程中,曾经有一定生物适应意义的无条件反射,如:巴宾斯基反射、抓握反射、惊跳反射(又叫摩罗反射)、游泳反射、行走反射等,此外,还有其他一些无条件反射,如眨眼反射、瞳孔反射、吞咽反射、打嗝、喷嚏等等。
条件反射是后天训练出来的,著名科学家巴甫洛夫就曾对条件反射的形成、消退、自然恢复、泛化、分化以及各种抑制现象进行过相当细致、系统的实验研究,。
无论是条件反射还是无条件反射,从主观上都可以看作是一种因果作用关系,即都存在着触发条件,都会导致某一结果的产生,所以无条件反射其实也属于条件反射范畴。只有在成因上,无条件反射是根据遗传信息形成的神经网络结构,而条件反射是后天在先前的网络基础上,依据外界环境继续发展完善的神经网络结构。两者之间是继承和发展的关系,但从这两个阶段所形成的神经网络功能来看,对外界的刺激都具备输入、传递、输出这一处理过程即反射过程,所以从某种意义上讲,也可以把无条件反射归类到条件反射范畴中去,或者说条件反射等同于反射。
神经系统中的条件反射具有三个要素:输入、传递、输出。其中的每一个要素既可以用单个神经元表示,也可以用一个神经群落来表示。当用少数几个神经元表示时,对应的是生物个体对局部刺激的反应,当扩展到神经群落时,对应的就可能就是对某一激发事件的处理方法了。
反射中的输入,最能使我们联想到传入神经元(感觉神经元),但在这里,它可以指单个的感觉神经元,也可以指一种感官(眼睛中的视神经群落、耳中的听觉神经中枢、皮肤中与各类感受器连接的神经群落等等),甚至可以是大脑中某一区域内形成某一表象或是概念的神经群落。反射中的输出同样可以指传出神经元(即脊髓前角或脑干的运动神经元),也可以指大脑中某一区域内形成某一概念或是表象的神经群落。反射中的中间传递过程是信息的加工处理的过程,可以由单个神经元、神经链路或是神经网络来承担,甚至可以直接由输入与输出的对应载体来分担。这样生物神经系统中的反射弧只是它的一个子项罢了,条件反射在主观上也对应着我们常说的“产生、经过与结果”即因果关系。
有一个低等生物海兔的记忆试验:海兔本身具有被触摸(水管部分)后的鳃缩反射,但连续十几次的刺激后,鳃缩反应就逐渐减慢.经过研究发现,海兔的习惯化是由于神经递质发生变化所致.进一步的研究发现这种变化是突触中的感觉神经元的Ca离子门关闭,导致递质的释放量减少所致.上述试验说明简单的记忆与神经递质和突触有关.又如大鼠的大脑皮质切除试验:用迷宫训练大鼠,如果大鼠学会并记住顺利走出迷宫的道路后,切除它的大脑皮质,记忆就会消退.不论切除的是大脑皮质的哪一部分,总是切除的多,记忆消退的多;切除的少,记忆消退的就少。
首先,认知通常强调的是结果,是神经网络定型后的结果。神经网络的定型过程就是认知的建立过程,也就是生物个体的学习过程,它同时表现了出生物的记忆过程。定型好的神经网络对触发信息的处理过程即反射过程,就是记忆的提取过程,也正是通过这一过程反映出了认知的存在。
生物个体对客观事物的认知可以解释为:客观事物在主观意识中形成了表象,并且该表象与一系列的活动(生理的或心理的)相联系。换句话说,某一客观事物的信息如果经过大脑处理能够引发出一系列的动作(这是一种反射现象,符合前面对反射的定义),我们就可以说对这一事物已经认知了。
行为主义与符号主义中对认知建立过程中所显现出的记忆现象都有很详细的类别划分,其中每一种记忆类别都仅与一种认知的建立模式相对应。所以,与其用记忆类别来划分还不如用认知类别来划分更为合理,在这里由于篇幅所限,我仅将认知简单概括为以下三种类别:物体认知、事件认知以及两种认知的衍生产物抽象事物认知。
a、物体认知
感受外界客观环境最简单的办法是通过感官直接去“接触”物质对象,并通过大脑处理,并最终导致一个或一系列的结果,这种因果过程就是对客观物体的认知。如:看到一个苹果,我们产生了拿的动作,同时也可以产生许多其他的动作如激活色彩感觉中枢、激活味觉中枢等等,当可以有这些动作产生时,就完成了对苹果的认知。
下面我们将详细讲解神经网络对物体认知的描述。
一个输入集合I(触觉、视觉等的感应细胞(本文转载自
www.yzbxz.com 一枝笔写作网)构成的集合或是处于某一层次上的神经元集合)对之内两个不同区域(A、B)的刺激做出相应Y与X两种不同反应的神经处理过程,如图2。
图2的a、b、c为三种AB可能存在的输入情况。图2a中A、B分别对应Y、X,神经链路没有重叠,刺激A时得到Y的输出,刺激B时得到X的输出,结果不会出现问题,请注意:带有方向的黑线只是代表逻辑上的链路,在实际中,链路与链路之间有质的区别,这里只做简单的等价说明,用数量表示质量。图2b中A、B间有了交叉,在处理过程中,当A受到刺激会产生Y的输出,同时会有三条逻辑链路去刺激X,但做为X的全部决定因素,这三条相比从B到X余下的空闲联络,只占很小的一部分,它们还不足以激活X,所以分别刺激A、B仍然会得到正确的输出。对于X这种在某一层次上的输出神经元来说,是否能被激活,主要取决于所有处于不同状态的输入链路的能量对比,在这里能量被量化为逻辑链路的数量,这样每个神经元对值的判断则等价为判断处于激活状态的逻辑链路数是否过半。此类神经链路就是兴奋类传导神经网络,单纯采用此类神经链路的系统只需要根据相应刺激感受区域是否有刺激发生,就可以得出正确的输出结果,但是在图2c中,刺激区域A包含着B的情况下,如果刺激B区会有正确输出X,然而如果刺激A区则会出错,Y与X会同时有效,这时我们就需要一种链路来阻止这种错误的发生,这就是抑制类神经链路,如图2c中的虚线箭头所示,抑制类逻辑链路只起到冲减、抵消兴奋类逻辑链路数量的作用,使得X在冲减后的兴奋链路合计数小于阀值,从而达到唯一正确输出Y得目的。(责任编辑:一枝笔写作事务所)